Verb Sense and Subcategorization: Using Joint Inference to Improve Performance on Complementary Task

نویسندگان

  • Galen Andrew
  • Trond Grenager
  • Christopher D. Manning
چکیده

We propose a general model for joint inference in correlated natural language processing tasks when fully annotated training data is not available, and apply this model to the dual tasks of word sense disambiguation and verb subcategorization frame determination. The model uses the EM algorithm to simultaneously complete partially annotated training sets and learn a generative probabilistic model over multiple annotations. When applied to the word sense and verb subcategorization frame determination tasks, the model learns sharp joint probability distributions which correspond to linguistic intuitions about the correlations of the variables. Use of the joint model leads to error reductions over competitive independent models on these tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Verb Sense And Subcategorization: Using Joint Inference To Improve Performance On Complementary Tasks

We propose a general model for joint inference in correlated natural language processing tasks when fully annotated training data is not available, and apply this model to the dual tasks of word sense disambiguation and verb subcategorization frame determination. The model uses the EM algorithm to simultaneously complete partially annotated training sets and learn a generative probabilistic mod...

متن کامل

Using Verb Subcategorization for Word Sense Disambiguation

We develop a model for predicting verb sense from subcategorization information and integrate it into SSI-Dijkstra, a wide-coverage knowledge-based WSD algorithm. Adding syntactic knowledge in this way should correct the current poor performance of WSD systems on verbs. This paper also presents, for the first time, an evaluation of SSI-Dijkstra on a standard data set which enables a comparison ...

متن کامل

Learning Automatic Acquisition of Subcategorization Frames Using Bayesian Inference and Support Vector Machines

Learning Bayesian Belief Networks (BBN) from corpora and Support Vector Machines (SVM) have been applied to the automatic acquisition of verb subcategorization frames for Modern Greek. We are incorporating minimal linguistic resources, i.e. basic morphological tagging and phrase chunking, to demonstrate that verb subcategorization, which is of great significance for developing robust natural la...

متن کامل

Bengali Verb Subcategorization Frame Acquisition - A Baseline Model

Acquisition of verb subcategorization frames is important as verbs generally take different types of relevant arguments associated with each phrase in a sentence in comparison to other parts of speech categories. This paper presents the acquisition of different subcategorization frames for a Bengali verb Kara (do). It generates compound verbs in Bengali when combined with various noun phrases. ...

متن کامل

Verb Sense and Verb Subcategorization Probabilities

Roland, Douglas William (Ph.D., Linguistics) Verb Sense and Verb Subcategorization Probabilities Thesis directed by Associate Professor Daniel S. Jurafsky This dissertation investigates a variety of problems in psycholinguistics and computational linguistics caused by the differences in verb subcategorization probabilities found between various corpora and experimental data sets. For psycholing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004